Media Release | Sep. 15, 2011

UBC-Vancouver Coastal Health researcher discovers new type of spinal cord stem cell

A group led by a University of British Columbia and Vancouver Coastal Health scientist has discovered a type of spinal cord cell that could function as a stem cell, with the ability to regenerate portions of the central nervous system in people with spinal cord injuries, multiple sclerosis or amyotrophic lateral sclerosis (Lou Gehrig’s disease).

The radial glial cells, which are marked by long projections that can forge through brain tissue, had never previously been found in an adult spinal cord. Radial glia, which are instrumental in building the brain and spinal cord during an organism’s embryonic phase, vastly outnumber other potential stem cells in the spinal cord and are much more accessible. The findings were published online this week in PLoS One.

Stem cells have the capability of dividing into more specialized types of cells, either during the growth of an organism or to help replenish other cells. Scientists consider stem cells a promising way to replace injured or diseased organs and tissues.

The search for spinal stem cells of the central nervous system has until now focused deep in the spinal cord. Jane Roskams, a professor in the UBC Dept. of Zoology, broadened the search by using genetic profiles of nervous system stem cells that were developed and made publicly accessible by the Allen Institute for Brain Science in Seattle.

Roskams, collaborating with researchers at the Allen Institute, McGill University and Yale University, found cells with similar genes – radial glial cells – along the outside edge of spinal cords of mice.

“That is exactly where you would want these cells to be if you want to activate them with drugs while minimizing secondary damage,” says Roskams, a member ICORD (International Collaboration on Repair Discoveries) and the Brain Research Center, both partnerships of UBC and the Vancouver Coastal Health Research Institute.

Roskams’ team also found that radial glial cells in the spinal cord share a unique set of genes with other neural stem cells. Several of these – when mutated – can lead to human diseases, including some that target the nervous system. That discovery opens new possibilities for potential gene therapy treatments that would replace mutated, dysfunctional spinal cord cells with healthier ones produced by the radial glial cells.

“These long strands of radial glial cells amount to a potentially promising repair network that is perfectly situated to help people recover from spinal cord injuries or spinal disorders,” Roskams says. “For some reason, they aren’t re-activated very effectively in adulthood. The key is to find a way of stimulating them so they reprise their role of generating new neural cells when needed.”

The research was supported by the Canadian Institutes of Health Research, the Michael Smith Foundation for Health Research, the Natural Sciences and Engineering Research Council of Canada and the Jack Brown and Family Alzheimer’s Research Foundation.

The University of British Columbia (UBC) is one of North America’s largest public research and teaching institutions, and one of only two Canadian institutions consistently ranked among the world’s 40 best universities. Surrounded by the beauty of the Canadian West, it is a place that inspires bold, new ways of thinking that have helped make it a national leader in areas as diverse as community service learning, sustainability and research commercialization.  UBC offers more than 50,000 students a range of innovative programs and attracts $550 million per year in research funding from government, non-profit organizations and industry through 7,000 grants.

Vancouver Coastal Health Research Institute (VCHRI) is the research body of Vancouver Coastal Health Authority, which includes BC’s largest academic and teaching health sciences centres: VGH, UBC Hospital, and GF Strong Rehabilitation Centre. In academic partnership with the University of British Columbia, VCHRI brings innovation and discovery to patient care, advancing healthier lives in healthy communities across British Columbia, Canada, and beyond. www.vchri.ca.

International Collaboration on Repair Discoveries (ICORD), is a world leading health research centre focused on spinal cord injury. From the lab-based cellular level of understanding injury to rehabilitation and recovery, our researchers are dedicated to the development and translation of more effective strategies to promote prevention, functional recovery, and improved quality of life after spinal cord injury. Located at Vancouver General Hospital in the Blusson Spinal Cord Centre, ICORD is supported by UBC Faculty of Medicine and Vancouver Coastal Health Research Institute. Visit www.icord.org.

The Brain Research Centre comprises more than 200 investigators with multidisciplinary expertise in neuroscience research ranging from the test tube, to the bedside, to industrial spin-offs. The centre is a partnership of UBC and VCH Research Institute. For more information, visit www.brain.ubc.ca.

Related topics: , , , , , , , , , , ,

Share This

Contact

Brian Kladko
UBC Public Affairs
Tel: 604.822.2234
Cell: 604.760.4169
Email: brian.kladko@ubc.ca

Jane Roskams
UBC Department of Zoology
Office: 604.827.5080
Lab: 604.827.5082
Cell: 604.802.3915
Email: roskams@zoology.ubc.ca

Partners

Brain Research Centre
Vancouver Coastal Health Research Institute

a place of mind, The University of British Columbia

UBC Public Affairs
310 - 6251 Cecil Green Park Road
Vancouver, BC
Canada V6T 1Z1
Tel: 604.822.3131
Fax: 604.822.2684
E-mail: public.affairs@ubc.ca

Emergency Procedures | Accessibility | Contact UBC | © Copyright The University of British Columbia